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Interaction of a kink soliton with a breather in a Fermi-Pasta-Ulam chain
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The collision process between a breather and moving kink soliton is investigated both analytically and
numerically in Fermi-Pasta-UlaiffFPU) chains. As it is shown by both analytical and numerical consideration
low amplitude breathers and soft kinks retain their shapes after interaction. Low amplitude breather only
changes the location after collision and remains static. As the numerical simulations show, the shift of its
position is proportional to the stiffness of the kink soliton, what is in accordance with the analytical predictions
made in this paper. The numerical experiments are also carried out for large amplitude breathers and some
interesting effects are observed: The odd parity large amplitude breather does not change position when
colliding with a widely separated soft kink-antikink pair, while in the case of a closely placed kink-antikink
pair the breather transforms into the moving one. Therefore it is suggested that the “harmless” objects similar
to the kink solitons in FPU chains could be used in order to displace or move the strongly localized structures
in realistic physical systems. In particular, the analogies with quasi-one-dimensional easy-plane-type spin
structures are discussed.
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I. INTRODUCTION tons in a low energy limit. These localized solutions are well
known for easy-plane magnetic structufé8,15 and dem-

Chains of classical anharmonic oscillators can serve aenstrate similar properties as in the case of FPU chains
models for more complex physical systems which undef16,17.
definite conditions could be treated as one-dimensional ob- The main difference between Goldstone mode kink soli-
jects, e.g., optical fibers, magnetic film waveguides, quasitons and ordinary kinks of models related to the sine-Gordon
one-dimensional spin systems, DNA, ionic crystals, etc. Byequation (particularly, its discrete analogy-Frenkel-
modeling various physical processes one can directly sekantorova mode[18,19) is that the former do not carry a
consequences using computer simulations and compare thegpological charge. Besides that, the kinks are believed to be
with the established analytical schemes. In the present papéie exact solution§20] in the FPU chain. Because of these
we propose to model different nonlinear processes in chainsircumstances it is expected that they should not decay by
of coupled oscillators making simultaneous interpretationgshemselves and do not destruct other localizations during the
and predictions concerning real physical systems. scattering process as long as no energy redistribution is re-

The one-dimensional chain of equal-mass oscillators, alquired. In this connection it should be mentioned that the
ready the simplest model exhibits the following nontrivial FPU chain, the linear spectrum of which is bounded from
phenomena such as: energy equipartitiai?], appearance above, exhibits another nontrivial solution in high energy
of various pattern$3] and localizationg4] (either moving  limit. This solution represents the intrinsic localized mode
[5] or static[6,7]), different regimes of chaotic dynamics (discrete breath@f21,22, which in a low amplitude limit
[8,9], etc. Therefore these classical systems could serve apuld be considered as the particular case of semidiscrete
tools for better understanding of nonlinear phenomena ienvelope solitori23,24. Let us note a direct analogy of the
completely differenion first sighj many-body systems. For above with quasi-one-dimensional magnetic systems where
instance, invariance under the simple symmetry transformasimilar localizations have recently been discovef28,26
tion u,—up,+const (, is a displacement afith oscillato)  or predicted 27].

relates the Fermi-Pasta-UlafiPU) chain[10] (interparticle As it follows from the analytical and numerical consider-
forces are functions of only relative displaceméntsth a  ations made in the present paper the kink solitons are indeed
wide class of systems with continuous symmetfie, e.g., “harmless:” after interaction the shapes of both kink and

quasi-one-dimensional easy-plane ferromagnets and antifelsreather remain unchanged. The collision only causes the
romagnet$12], ferrimagnetic spiral structur¢43], and even  shift of the position of spatially localized breather or its
guantum Hall double layefpseudo) ferromagnets|14]. transformation into the slowly moving one. In this connec-
Such systems are characterized by the infinitely degenerateidn let us make a comparison with the strongly inelastic
energy ground state. Spontaneous breakdown of the symmeseattering process between kinks and breathers of the sine-
try (by choosing a definite ground stateads to the appear- Gordon equatiorj28,29, although it should be mentioned
ance of the gapless Goldstone mode forming the kink solithat in the latter case the nonlinear objects are solutions of
continuous equation unlike the discrete FPU model consid-
ered in the present paper.
*Email address: khomeriki@hotmail.com For analytical consideration in weakly nonlinear limit the
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multiple scale analysis will be used in order to present thevhich has a similar form to the kinks for the sine-Gordon
guantitative picture for kink-breather collision. But first, well equation but note that although the tails of the kink solution
known solutions for kink and breather will be briefly red- Eqg. (6) correspond to the different ground stateg£0 and
erived in order to introduce the method of calculationsu,=x/\/6 for n—— and n—, respectively, these

[30,31. ground states carry the same energy because of the men-
tioned symmetryu,— u,+const. These kinks do not carry

Il. ANALYTICAL SOLUTIONS FOR KINK SOLITON AND topological charge and as far as they connect degenerate

BREATHER IN WEAKLY NONLINEAR LIMIT ground states they can be called Goldstone mode kinks. It

) ) ) ) should also be noted that in terms of relative displacements
The equations of motion of the FPU oscillator chain are ;, —y .. —u, this object is a discretized version of the
. Korteweg-de Vries soliton and therefore the definition of
Un=(Uns 1= Up) + (Up_3 = Up) + (Ups 1~ Up)° kink soliton is usually used in literature for its identification.
(U 1—Uu,)3 & The similar ]ocalized objects_could be created_in magnetic
n-1 “n/> structures with easy plane anisotropy where their appearance
. I . also is connected with the broken symmetry Goldstone
where the dots ovau, express the time derivatives. Dimen- : .
mqode. The transverse component of such magnetic localiza-

sionless units are used so that the masses, the linear a l9n (in-plane componepthas a kink-like form, while out of

nonlinear force constants, and the lattice spacing are take[ﬂe easv-plane component it represents the ordinar
equal to unity. The real displacements are expressed frorRorteweg-é)e Vries soli?ovﬁ13 15 P y

d.imens_ionless onesif) py dividing the Iattgzr on the c_oeffi- The solution Eq(6) is valid if one can neglect the higher
clent _K4/m, wherem is a mass of paf“c'e antl,, is a  derivatives. This could be achieved if the following condi-
coefficient before the anharmonic quartic term. Thus if thetion is satisfied for the kink stiffness:
nonlinear interaction is strong enough it is permissible to
have large values af,, (e.g.,u,>1) and this does not cause 6A2<1. @)
the scattering of neighboring particles.

First let us derive the kink-soliton solution by assuming  afterwards let us rederive the breather solution using
thatu, smoothly varies in space time. Then it is appropriatemytiple scale analysis presenting as the multiplication of
to introduce slow variables harmonic oscillation and smooth envelope function

&r=e(n—vgt), 7= 2 e )
Un=35 p2(é2, 7)€"V +c.c., (8
and denote

3) where c.c. denotes complex conjugation and new slow vari-
ables are defined as follows:

wheree is a formal small parameter indicating smallness or 5

slowness of the variables before which it appears. Substitut- E2=e(nN—vot);  7p=8"t. ©)

ing Eq. (3) into the motion equatioril) and collecting the ] ] o

terms with the same order ef it becomes possible to treat AS far as only small displacements are considered it is natu-
the problem perturbatively. In particular, the velocity is '@l 0 neglect the higher harmonics working in a rotating

Up=¢1(&1,71),

determined in the second approximation ower wave approximation. Carrying out the procedure similar to
the previous caséollecting terms with the same harmonics
v=+1. (4)  and order ofe) in the first order ovee a well known dis-

persion relation for linear excitations in the FPU chain is

Without the restriction of generality let us further considerObtained:
the solution with negative velocity; = — 1. Other solutions

will be recovered simply by changing the axis direction. Fi- == y2(1-cosk). (10
nally, in the forth approximation ovet the following non- o .
linear equation is obtained: In the second approximation the expression for group veloc-
ity is derived:
92 1 d*e; 3[de,)\2° :
o 176 _(ﬂ> T s sink _ da
961071 24 5¢] 2\ 0&1] o] V2= T kK 11

which is an exactly integrable modified Korteweg—de Vries
equation[32] for the functiondeq/9é,. Equation(5) was
derived for the FPU chain in Refkl6,17] and finally leads
to the kink-like solution foru,:

and finally we get the nonlinear Schiinger equation for the
envelope functionp, in the third approximation oves:

gy w ey 3
5 2 i———g 5 ~geiel’e=0, (12
Up= 1= 2/3(arctaf et AAY) (6 2 23
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which permits bright soliton solution. Thus in termswpfthe

) ) . . : dpy 1%, 2 Q) Ie1)?
envelope soliton solutiofmoving with a group velocity ) =12 —3lea|*p2— ¢ 95 +3 &, =0.
is rederived(see e.g., Ref.23)): 23 1 1 a8
U= B codnk— wyt) The variablesé; and &, in Exp. (16) are chosen such that
" ch V3/2Bwi(n—uv,t)] ’ group velocities for noninteracting kink soliton and breather
(with carrier wave number equal ) arev,;=—1 andv,
~ =0, which guarantees the satisfaction of the motion equation
o= o1+ (31 w8, B<L. (13 (1) in the Io%ver orders oves. |
By letting

The breather solution is obtained by setting=0, therefore

carrier wave numbek= 7 (thusw=2) should be considered
according to relation§l0) and(11). Thus we get the expres- A ) ETo) deq\?
sion for the low amplitude breather solution: (9_62: — 6| ¢, ﬁ—égl: - (ﬁ_‘fl) ,

we come again to Eq$5) and (12) for kink soliton ¢, and
breathere, (with carrier wave numbek= 7). The choice
Eg. (19 physically means that the interaction effects reduce
which coincides with the corresponding breather solution Obpnly to the phase shifts of SO"thS while the S(_)Iitons’ profiles
tained in Ref[6]. remain unghanged in the Ieadlng approxmatlon. _

Finally, in the fourth approximation oves for the first
harmonic the following equality is derived:

(19

B cog wn—2t—(3/2)B?t)
Unp=
ch(B\/én)

, B<1, (19

IIl. INTERACTION BETWEEN KINK-SOLITON
AND BREATHER
. . . . IV, 3[dgy|?
A. Analytical results in weakly nonlinear limit E = > f . (20)
Now let us start the main task of the paper: analytical ! !

description of kink-breather interaction. Keeping in mind According to the last relation the breather acquires group
that in the absence of either kink or breather one shouldelocity during the interaction process, but as the kink passes
come to the solution&l4) or (6), respectively, | am seeking it stops. The shift of the breather’s position could be calcu-

the solution in the fO”OWing fOI'rT(USing again the rOtating lated from the fo”owing Simp'e relations:
wave approximation

€ i(mn—2t)+ie - * © 9P = ¥ 6
Up=¢1(&1,7) + 5[902(52’7'2)9'( e 4 e ], Izzf v2dt=J Tzdt:J’ fd&:\/?—ML
o] — 00 — 0 l

where the following choice for slow space-time variables isihys the shift is always positive, i.e., the breather will be
made: shifted opposite to the kink's propagation directifiat us
remember that group velocity of the kink has been chosen to

&L=e(n+)—e?V (1)), m=¢, be negativgirrespective of the sign oA, therefore the shift
is the same for both kink and antikink cases.
E,=en—e2W,(€y,71), Tr=gt. (16) Denoting byt, andt, the times needed for the kink to

travel from one side of the chain to the other in the presence
Here the phase and argument shifts are introduced in order @ absence of the breather, one can calculate the difference
decouple nonlinear equations. Substituting Bdp) into the  At=t,—t; using relations similar to Eq21). Thus one gets
initial equation of motion for the FPU chain E(L) we get
the following two nonlinear equations in the forth order over
e for zero harmonic and in the third order ovefor the first At=26|B]. (22)

harmonic:
The physical meaning of expressiof&l) and(22) could

2 4 2.2 be simply understood by mentioning that in the case of

er 1 §<%) 971 weakly nonlinear solitons’ interaction the group velocities of
9810T1 24 5¢) 21 061] g2 the solitons change only during the interaction process. In
particular, the breather acquires the nonzero velocity while

o1 do 9 |[oW, ) interacting with the kink soliton. Simultaneously, during the

€2 + 9E, 9Ey ,9_52+6|‘Pz| =0, same small time period the velocity of the kink soliton be-
1 comes larger than in the case of its free propagation. These
(17) circumstances cause the shift of the low amplitude breather

L1
2
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0.2 y y y the localized objects behave as expected: they retain their
0 shapes and the low amplitude breather changes its position
Uy and after interaction becomes static again. According to Fig.
-0.21 1 the shift is equal tb,~1 as it expected from formul@1).
04l o1 a) Note only that as four localized objects with the same stiff-
008 ness are usetwo kink-antikink pairg the value obtained
-0.61 from expression(21) should be multiplied by a factor of 4.
o8k ° The interaction also causes acceleration of the kink-antikink
0.05 pair (propagation velocity of the kink-antikink pair is larger
-1 04 during the interaction process in comparison with free propa-
% 100 gation as it follows from formula(22).
-1.2f : . . .
Obviously, the weakly nonlinear approach fails, consider-

0 z0 100 120 200 ing the large amplitude breather and/or stiff kink solitons.
. . Therefore it is expected that the results could be different.
Lattice Sites Indeed, the following phenomena are monitored when col-
0.2 . . . liding the soft kink-antikink pair with the strongly localized
odd parity mode. The breather with an amplitude abBve
~0.2 does not change the position if soft kink solitons are
used for collision. Moreover, the breather does not change
the position if widely separated kink solitons are used for
b) collision. On the other hand, if there is a relatively short
distance(by order of inverse stiffnegsbetween kink and
antikink the breather starts moving after collision and does
not stop. This behavior is expressed in Fig. 2, where the
strongly localized odd parity mode .(.0,—-1/2,1,
—1/2,0...) is placed in the center of the FPU chain and
different effects are monitored for different separations be-
L L L tween kink-antikink pairgwith stiffnessA=0.25). Appar-
0 50 100 ] 150 . 200 ently some kind of “quantum” phenomenon is caused by the
Lattice Sites fact that the single soft kinKor antikink does not carry

FIG. 1. Shapes and locations of kink-antikink pairs and Iow.enoth impulse to transform the static breather into the mov-

amplitude breathei(a) before andb) after collision. Kink-antikink ing one, while the kink-antikink pair is able to do so. This

pairs move from right to the left. Insets show the enlarged view Ofstatement is consistent with t_he obseryation Of, chaotic
the breatheru,, is the displacement of theth site. breathergsee e.g., Ref.1]) and with the lattice quantization

procedure recently proposed in REZ4]. It should be men-

position and on the other hand the earlier arrival of the kinkioned that all localized objects retain their shapes after in-
soliton at the left side of the chaisee Fig. 1 teraction and _the acc_eleratlo_n of the kink-antikink pair is still
observed during the interaction process.

Considering the breathers with larger amplitudes, natu-
rally, the stiffer kink-antikink pairs will be required to dis-

As it was mentioned above, the direction of the shift of place the breather. A number of numerical experiments have
the breather position does not depend on whether the kink dreen made for breathers with larger amplitudes. The general
antikink participate in the collision. Therefore in order to feature is represented in Fig. 3, where the collision of odd
increase the interaction effect two kink-antikink pairs areparity mode (...,0~1,2—-1,0, .. .) andckink-antikink pair
used for collision with the breather. In the numerical experi-with stiffnessA=0.35 is demonstrated. As in the previous
ment the soft kink solution Eq(6) and low amplitude case the breather does not change its position, colliding with
breather Eq(14) are separated from each other in the FPUthe widely separated kink-antikink pair. However, in contrast
chain with pinned boundary conditiorisee Fig. 1L A nu-  to the previous case, although the breather starts to move
merical experiment fully confirms analytical predictions: the because of the collision with the closely placed kink-antikink
nonlinear objects for which analitycal results E@G8) and  pair, after some time it is trapped by the lattice sites and
(14) are valid[i.e., the conditiong7) and (14) are satisfiefl  stops.
behave in full accordance with formuld21) and (22). In It should be mentioned that according to the analytical
particular, as a series of numerical experiments show, theesults and numerical experiments the low amplitude
shift of the low amplitude breather position is proportional tobreather acquires the group velocity only during the interac-
the kink-soliton stiffness and does not depend on its owrion process, while the large amplitude breather once starting
amplitude. In Fig. 1 the collision process between two kink-to move does not stoffor intermediate amplitude®r it will
antikink pairs with the same stiffnes8=0.2 and the become further trapped by the lattice sités larger ampli-
breather with amplitud®=0.1 is expressed. It is clear that tudes, approximatel3>1.4).

u, 0

-0.2}

041
-0.61
08}

B. Numerical experiments
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Time

FIG. 2. (a Collision of widely separated
kink-antikink pair (stiffness A=0.25) with
strongly localized odd parity mod@amplitudeB
=1). (b) Collision of the same breather with the
closely placed kink-antikink pair. Arrows show
the initial position of the kink-antikink pair.

0 Lattice Sites

Time

0 Lattice Sites

In the present paper only the results concerning the colli IV. CONCLUSIONS
sion process with odd parity mode are presented because, as

. ; . . Summarizing, as it is shown above, the kink solitons
numerical simulations sho{21], the even parity mode spon- g

s ._could be used to displace or move the static localization
tan_eously starts to move and de;ays after a f|_n|te time Ioerlo@Vithout the destruction of the latter. The direct analogy to the
while the odd parity mode remains well localized in the ab'quasi-one-dimensional easy-plane magnetic structures
sence of collisions with other nonlinear objects. At the same&noyld be quoted again. The existence of continuo(® U
time only soft kink solitons are the subject of this study symmetry in magnetization vector space for this systems al-
because stiff kinks SUfﬁCientIy perturb the baCkgrOUnd and nlOWS the presence of the broken symmetry Goldstone mode,
is hard to see what causes displacement or pinning of thghich because of the existing nonlinearity forms the kink
breather. soliton. These large wavelength nonlinear excitations have
Let us mention also that reflected kink-antikink pairs al-been studied for easy-plane antiferromagnets in the presence
most return the low amplitude breather to its initial position, of applied magnetic field along the anisotropic gxi5] and
while they are unable to change the picture in the case of m spiral structure$13]. On the other hand it is knowji2]
large amplitude odd parity mode. As it is seen from Fig. 2,that the band edge excitations in easy-plane type antiferro-
the odd parity mode with amplitud®@=1 does not react on magnets form stable intrinsic localized spin wave modes
collision with the reflected kink-antikink pair and remains (ILSMs) having an odd parity structure in a large amplitude
moving with the same velocity. On the other hand, the redimit. Thus, a theoretical study and corresponding realistic
flected kink-antikink pair cannot displace the larger ampli-experiments could be planned in order to investigate and
tude breatherg=2) (see Fig. 3. observe the effects caused by the interaction between mag-
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u n
600
FIG. 3. Collision of closely placed kink-
500 antikink pair (stiffnessA=0.35) with larger am-
plitude B=2) odd parity mode. Note that al-
though the breather starts to move after collision
g (as in Fig. 2, it is further trapped by the lattice.
g

300
250
200

50 Lattice Sites
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