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Interaction of a kink soliton with a breather in a Fermi-Pasta-Ulam chain
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The collision process between a breather and moving kink soliton is investigated both analytically and
numerically in Fermi-Pasta-Ulam~FPU! chains. As it is shown by both analytical and numerical consideration
low amplitude breathers and soft kinks retain their shapes after interaction. Low amplitude breather only
changes the location after collision and remains static. As the numerical simulations show, the shift of its
position is proportional to the stiffness of the kink soliton, what is in accordance with the analytical predictions
made in this paper. The numerical experiments are also carried out for large amplitude breathers and some
interesting effects are observed: The odd parity large amplitude breather does not change position when
colliding with a widely separated soft kink-antikink pair, while in the case of a closely placed kink-antikink
pair the breather transforms into the moving one. Therefore it is suggested that the ‘‘harmless’’ objects similar
to the kink solitons in FPU chains could be used in order to displace or move the strongly localized structures
in realistic physical systems. In particular, the analogies with quasi-one-dimensional easy-plane-type spin
structures are discussed.

DOI: 10.1103/PhysRevE.65.026605 PACS number~s!: 63.20.Ry, 05.45.Yv, 63.20.Pw
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I. INTRODUCTION

Chains of classical anharmonic oscillators can serve
models for more complex physical systems which un
definite conditions could be treated as one-dimensional
jects, e.g., optical fibers, magnetic film waveguides, qu
one-dimensional spin systems, DNA, ionic crystals, etc.
modeling various physical processes one can directly
consequences using computer simulations and compare
with the established analytical schemes. In the present p
we propose to model different nonlinear processes in ch
of coupled oscillators making simultaneous interpretatio
and predictions concerning real physical systems.

The one-dimensional chain of equal-mass oscillators,
ready the simplest model exhibits the following nontriv
phenomena such as: energy equipartition@1,2#, appearance
of various patterns@3# and localizations@4# ~either moving
@5# or static @6,7#!, different regimes of chaotic dynamic
@8,9#, etc. Therefore these classical systems could serv
tools for better understanding of nonlinear phenomena
completely different~on first sight! many-body systems. Fo
instance, invariance under the simple symmetry transfor
tion un→un1const (un is a displacement ofnth oscillator!
relates the Fermi-Pasta-Ulam~FPU! chain@10# ~interparticle
forces are functions of only relative displacements! with a
wide class of systems with continuous symmetries@11#, e.g.,
quasi-one-dimensional easy-plane ferromagnets and an
romagnets@12#, ferrimagnetic spiral structures@13#, and even
quantum Hall double layer~pseudo-! ferromagnets@14#.
Such systems are characterized by the infinitely degener
energy ground state. Spontaneous breakdown of the sym
try ~by choosing a definite ground state! leads to the appear
ance of the gapless Goldstone mode forming the kink s
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tons in a low energy limit. These localized solutions are w
known for easy-plane magnetic structures@13,15# and dem-
onstrate similar properties as in the case of FPU cha
@16,17#.

The main difference between Goldstone mode kink s
tons and ordinary kinks of models related to the sine-Gord
equation ~particularly, its discrete analogy-Frenke
Kantorova model@18,19#! is that the former do not carry a
topological charge. Besides that, the kinks are believed to
the exact solutions@20# in the FPU chain. Because of thes
circumstances it is expected that they should not decay
themselves and do not destruct other localizations during
scattering process as long as no energy redistribution is
quired. In this connection it should be mentioned that
FPU chain, the linear spectrum of which is bounded fro
above, exhibits another nontrivial solution in high ener
limit. This solution represents the intrinsic localized mo
~discrete breather! @21,22#, which in a low amplitude limit
could be considered as the particular case of semidisc
envelope soliton@23,24#. Let us note a direct analogy of th
above with quasi-one-dimensional magnetic systems wh
similar localizations have recently been discovered@25,26#
or predicted@27#.

As it follows from the analytical and numerical conside
ations made in the present paper the kink solitons are ind
‘‘harmless:’’ after interaction the shapes of both kink a
breather remain unchanged. The collision only causes
shift of the position of spatially localized breather or i
transformation into the slowly moving one. In this conne
tion let us make a comparison with the strongly inelas
scattering process between kinks and breathers of the s
Gordon equation@28,29#, although it should be mentione
that in the latter case the nonlinear objects are solution
continuous equation unlike the discrete FPU model con
ered in the present paper.

For analytical consideration in weakly nonlinear limit th
©2002 The American Physical Society05-1
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RAMAZ KHOMERIKI PHYSICAL REVIEW E 65 026605
multiple scale analysis will be used in order to present
quantitative picture for kink-breather collision. But first, we
known solutions for kink and breather will be briefly re
erived in order to introduce the method of calculatio
@30,31#.

II. ANALYTICAL SOLUTIONS FOR KINK SOLITON AND
BREATHER IN WEAKLY NONLINEAR LIMIT

The equations of motion of the FPU oscillator chain a

ün5~un112un!1~un212un!1~un112un!3

1~un212un!3, ~1!

where the dots overun express the time derivatives. Dimen
sionless units are used so that the masses, the linear
nonlinear force constants, and the lattice spacing are ta
equal to unity. The real displacements are expressed f
dimensionless ones (un) by dividing the latter on the coeffi
cient AK4 /m, where m is a mass of particle andK4 is a
coefficient before the anharmonic quartic term. Thus if
nonlinear interaction is strong enough it is permissible
have large values ofun ~e.g.,un@1) and this does not caus
the scattering of neighboring particles.

First let us derive the kink-soliton solution by assumi
that un smoothly varies in space time. Then it is appropria
to introduce slow variables

j15«~n2v1t !, t15«3t ~2!

and denote

un5w1~j1 ,t1!, ~3!

where« is a formal small parameter indicating smallness
slowness of the variables before which it appears. Subst
ing Eq. ~3! into the motion equation~1! and collecting the
terms with the same order of« it becomes possible to trea
the problem perturbatively. In particular, the velocityv1 is
determined in the second approximation over«:

v1561. ~4!

Without the restriction of generality let us further consid
the solution with negative velocityv1521. Other solutions
will be recovered simply by changing the axis direction. F
nally, in the forth approximation over« the following non-
linear equation is obtained:

]2w1

]j1]t1
1

1

24

]4w1

]j1
4

1
3

2 S ]w1

]j1
D 2]2w1

]j1
2

50, ~5!

which is an exactly integrable modified Korteweg–de Vr
equation@32# for the function]w1 /]j1. Equation~5! was
derived for the FPU chain in Refs.@16,17# and finally leads
to the kink-like solution forun :

un5w15A2/3~arctan@eAA6(n1t1(A/2)2t)# !, ~6!
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which has a similar form to the kinks for the sine-Gord
equation but note that although the tails of the kink solut
Eq. ~6! correspond to the different ground states (un50 and
un5p/A6 for n→2` and n→`, respectively!, these
ground states carry the same energy because of the m
tioned symmetryun→un1const. These kinks do not carr
topological charge and as far as they connect degene
ground states they can be called Goldstone mode kink
should also be noted that in terms of relative displaceme
vn5un112un this object is a discretized version of th
Korteweg-de Vries soliton and therefore the definition
kink soliton is usually used in literature for its identificatio
The similar localized objects could be created in magne
structures with easy plane anisotropy where their appeara
also is connected with the broken symmetry Goldsto
mode. The transverse component of such magnetic loca
tion ~in-plane component! has a kink-like form, while out of
the easy-plane component it represents the ordin
Korteweg-de Vries soliton@13,15#.

The solution Eq.~6! is valid if one can neglect the highe
derivatives. This could be achieved if the following cond
tion is satisfied for the kink stiffness:

6A2!1. ~7!

Afterwards let us rederive the breather solution us
multiple scale analysis presentingun as the multiplication of
harmonic oscillation and smooth envelope function

un5
«

2
w2~j2 ,t2!ei (kn2vt)1c.c., ~8!

where c.c. denotes complex conjugation and new slow v
ables are defined as follows:

j25«~n2v2t !; t25«2t. ~9!

As far as only small displacements are considered it is n
ral to neglect the higher harmonics working in a rotati
wave approximation. Carrying out the procedure similar
the previous case~collecting terms with the same harmonic
and order of«) in the first order over« a well known dis-
persion relation for linear excitations in the FPU chain
obtained:

v5vk[A2~12cosk!. ~10!

In the second approximation the expression for group ve
ity is derived:

v25
sink

vk
[

dvk

dk
, ~11!

and finally we get the nonlinear Schro¨dinger equation for the
envelope functionw2 in the third approximation over«:

i
]w2

]t2
2

vk

8

]2w2

]j2
2

2
3

8
vk

3uw2u2w250, ~12!
5-2



d
-

ob

ca
d
u

i

er

e

t
er

tion

ce
es

up
ses
u-

be

n to

o
nce
nce

of
of
. In
ile
e

e-
ese

ther
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which permits bright soliton solution. Thus in terms ofun the
envelope soliton solution~moving with a group velocityv2)
is rederived~see e.g., Ref.@23#!:

un5
B cos~nk2ṽkt !

ch@A3/2Bvk~n2v2t !#
,

ṽk5vk~11~3/16!vk
2B2!, B!1. ~13!

The breather solution is obtained by settingv250, therefore
carrier wave numberk5p ~thusv52) should be considere
according to relations~10! and~11!. Thus we get the expres
sion for the low amplitude breather solution:

un5
B cos~pn22t2~3/2!B2t !

ch~BA6n!
, B!1, ~14!

which coincides with the corresponding breather solution
tained in Ref.@6#.

III. INTERACTION BETWEEN KINK-SOLITON
AND BREATHER

A. Analytical results in weakly nonlinear limit

Now let us start the main task of the paper: analyti
description of kink-breather interaction. Keeping in min
that in the absence of either kink or breather one sho
come to the solutions~14! or ~6!, respectively, I am seeking
the solution in the following form~using again the rotating
wave approximation!:

un5w1~j1 ,t1!1
«

2
@w2~j2 ,t2!ei (pn22t)1 i«V(j1 ,t1)1c.c.#,

~15!

where the following choice for slow space-time variables
made:

j15«~n1t !2«2C1~j2 ,t2!, t15«3t,

j25«n2«2C2~j1 ,t1!, t25«2t. ~16!

Here the phase and argument shifts are introduced in ord
decouple nonlinear equations. Substituting Eq.~15! into the
initial equation of motion for the FPU chain Eq.~1! we get
the following two nonlinear equations in the forth order ov
« for zero harmonic and in the third order over« for the first
harmonic:

]2w1

]j1]t1
1

1

24

]4w1

]j1
4

1
3

2 S ]w1

]j1
D 2]2w1

]j1
2

1
1

2 F ]2w1

]j1
2

1
]w1

]j1

]

]j2
G F]C1

]j2
16uw2u2G50,

~17!
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]w2

]t2
2

1

4

]2w2

]j2
2

23uw2u2w22w2F ]V

]j1
13S ]w1

]j1
D 2G50.

~18!

The variablesj1 and j2 in Exp. ~16! are chosen such tha
group velocities for noninteracting kink soliton and breath
~with carrier wave number equal top) arev1521 andv2
50, which guarantees the satisfaction of the motion equa
~1! in the lower orders over«.

By letting

]C1

]j2
526uw2u2,

]V

]j1
523S ]w1

]j1
D 2

, ~19!

we come again to Eqs.~5! and ~12! for kink soliton w1 and
breatherw2 ~with carrier wave numberk5p). The choice
Eq. ~19! physically means that the interaction effects redu
only to the phase shifts of solitons while the solitons’ profil
remain unchanged in the leading approximation.

Finally, in the fourth approximation over« for the first
harmonic the following equality is derived:

]C2

]j1
5

3

2 S ]w1

]j1
D 2

. ~20!

According to the last relation the breather acquires gro
velocity during the interaction process, but as the kink pas
it stops. The shift of the breather’s position could be calc
lated from the following simple relations:

l 25E
2`

`

v2dt5E
2`

` ]C2

]t
dt5E

2`

` ]C2

]j1
dj15

A6

2
uAu,

~21!

thus the shift is always positive, i.e., the breather will
shifted opposite to the kink’s propagation direction~let us
remember that group velocity of the kink has been chose
be negative! irrespective of the sign ofA, therefore the shift
is the same for both kink and antikink cases.

Denoting byt1 and t2 the times needed for the kink t
travel from one side of the chain to the other in the prese
or absence of the breather, one can calculate the differe
Dt5t22t1 using relations similar to Eq.~21!. Thus one gets

Dt52A6uBu. ~22!

The physical meaning of expressions~21! and~22! could
be simply understood by mentioning that in the case
weakly nonlinear solitons’ interaction the group velocities
the solitons change only during the interaction process
particular, the breather acquires the nonzero velocity wh
interacting with the kink soliton. Simultaneously, during th
same small time period the velocity of the kink soliton b
comes larger than in the case of its free propagation. Th
circumstances cause the shift of the low amplitude brea
5-3
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RAMAZ KHOMERIKI PHYSICAL REVIEW E 65 026605
position and on the other hand the earlier arrival of the k
soliton at the left side of the chain~see Fig. 1!.

B. Numerical experiments

As it was mentioned above, the direction of the shift
the breather position does not depend on whether the kin
antikink participate in the collision. Therefore in order
increase the interaction effect two kink-antikink pairs a
used for collision with the breather. In the numerical expe
ment the soft kink solution Eq.~6! and low amplitude
breather Eq.~14! are separated from each other in the FP
chain with pinned boundary conditions~see Fig. 1!. A nu-
merical experiment fully confirms analytical predictions: t
nonlinear objects for which analitycal results Eqs.~6! and
~14! are valid@i.e., the conditions~7! and ~14! are satisfied#
behave in full accordance with formulas~21! and ~22!. In
particular, as a series of numerical experiments show,
shift of the low amplitude breather position is proportional
the kink-soliton stiffness and does not depend on its o
amplitude. In Fig. 1 the collision process between two kin
antikink pairs with the same stiffnessA50.2 and the
breather with amplitudeB50.1 is expressed. It is clear tha

FIG. 1. Shapes and locations of kink-antikink pairs and l
amplitude breather:~a! before and~b! after collision. Kink-antikink
pairs move from right to the left. Insets show the enlarged view
the breather.un is the displacement of thenth site.
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k

f
or

-

e

n
-

the localized objects behave as expected: they retain t
shapes and the low amplitude breather changes its pos
and after interaction becomes static again. According to F
1 the shift is equal tol 2'1 as it expected from formula~21!.
Note only that as four localized objects with the same st
ness are used~two kink-antikink pairs! the value obtained
from expression~21! should be multiplied by a factor of 4
The interaction also causes acceleration of the kink-antik
pair ~propagation velocity of the kink-antikink pair is large
during the interaction process in comparison with free pro
gation! as it follows from formula~22!.

Obviously, the weakly nonlinear approach fails, consid
ing the large amplitude breather and/or stiff kink soliton
Therefore it is expected that the results could be differe
Indeed, the following phenomena are monitored when c
liding the soft kink-antikink pair with the strongly localize
odd parity mode. The breather with an amplitude aboveB
'0.2 does not change the position if soft kink solitons a
used for collision. Moreover, the breather does not cha
the position if widely separated kink solitons are used
collision. On the other hand, if there is a relatively sho
distance~by order of inverse stiffness! between kink and
antikink the breather starts moving after collision and do
not stop. This behavior is expressed in Fig. 2, where
strongly localized odd parity mode (. . . 0,21/2,1,
21/2,0 . . . ) is placed in the center of the FPU chain an
different effects are monitored for different separations
tween kink-antikink pairs~with stiffnessA50.25). Appar-
ently some kind of ‘‘quantum’’ phenomenon is caused by t
fact that the single soft kink~or antikink! does not carry
enough impulse to transform the static breather into the m
ing one, while the kink-antikink pair is able to do so. Th
statement is consistent with the observation of chao
breathers~see e.g., Ref.@1#! and with the lattice quantization
procedure recently proposed in Ref.@24#. It should be men-
tioned that all localized objects retain their shapes after
teraction and the acceleration of the kink-antikink pair is s
observed during the interaction process.

Considering the breathers with larger amplitudes, na
rally, the stiffer kink-antikink pairs will be required to dis
place the breather. A number of numerical experiments h
been made for breathers with larger amplitudes. The gen
feature is represented in Fig. 3, where the collision of o
parity mode (. . . ,0,21,2,21,0, . . . ) andkink-antikink pair
with stiffnessA50.35 is demonstrated. As in the previou
case the breather does not change its position, colliding w
the widely separated kink-antikink pair. However, in contra
to the previous case, although the breather starts to m
because of the collision with the closely placed kink-antiki
pair, after some time it is trapped by the lattice sites a
stops.

It should be mentioned that according to the analyti
results and numerical experiments the low amplitu
breather acquires the group velocity only during the inter
tion process, while the large amplitude breather once star
to move does not stop~for intermediate amplitudes! or it will
become further trapped by the lattice sites~for larger ampli-
tudes, approximatelyB.1.4).

f
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FIG. 2. ~a! Collision of widely separated
kink-antikink pair ~stiffness A50.25) with
strongly localized odd parity mode~amplitudeB
51). ~b! Collision of the same breather with th
closely placed kink-antikink pair. Arrows show
the initial position of the kink-antikink pair.
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In the present paper only the results concerning the c
sion process with odd parity mode are presented becaus
numerical simulations show@21#, the even parity mode spon
taneously starts to move and decays after a finite time per
while the odd parity mode remains well localized in the a
sence of collisions with other nonlinear objects. At the sa
time only soft kink solitons are the subject of this stu
because stiff kinks sufficiently perturb the background an
is hard to see what causes displacement or pinning of
breather.

Let us mention also that reflected kink-antikink pairs
most return the low amplitude breather to its initial positio
while they are unable to change the picture in the case
large amplitude odd parity mode. As it is seen from Fig.
the odd parity mode with amplitudeB51 does not react on
collision with the reflected kink-antikink pair and remain
moving with the same velocity. On the other hand, the
flected kink-antikink pair cannot displace the larger amp
tude breather (B52) ~see Fig. 3!.
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IV. CONCLUSIONS

Summarizing, as it is shown above, the kink solito
could be used to displace or move the static localizat
without the destruction of the latter. The direct analogy to
quasi-one-dimensional easy-plane magnetic structu
should be quoted again. The existence of continuous U~1!
symmetry in magnetization vector space for this systems
lows the presence of the broken symmetry Goldstone mo
which because of the existing nonlinearity forms the ki
soliton. These large wavelength nonlinear excitations h
been studied for easy-plane antiferromagnets in the pres
of applied magnetic field along the anisotropic axis@15# and
in spiral structures@13#. On the other hand it is known@12#
that the band edge excitations in easy-plane type antife
magnets form stable intrinsic localized spin wave mod
~ILSMs! having an odd parity structure in a large amplitu
limit. Thus, a theoretical study and corresponding realis
experiments could be planned in order to investigate
observe the effects caused by the interaction between m
5-5
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FIG. 3. Collision of closely placed kink-
antikink pair ~stiffnessA50.35) with larger am-
plitude (B52) odd parity mode. Note that al
though the breather starts to move after collisi
~as in Fig. 2!, it is further trapped by the lattice.
a
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y
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or
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de

.

netization kink solitons and ILSM in quasi-one-dimension
easy-plane structures. As the analogy is almost straigh
ward it could be predicted that kink solitons in the eas
plane magnetic structures should cause the same effect
FPU chains. In particular, they can displace or move
strongly localized objects without their destruction.
D

st
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